
Published as a conference paper at COLM 2025

µKE: Matryoshka Unstructured Knowledge Editing of Large
Language Models

Zian Su1∗ , Ziyang Huang2∗, Kaiyuan Zhang1, Xiangyu Zhang1

1Purdue University, 2Johns Hopkins University

{su284,zhan4057}@purdue.edu, zhuang86@jhu.edu, xyzhang@cs.purdue.edu

Abstract

Large language models (LLMs) have emerged as powerful knowledge bases
yet are limited by static training data, leading to issues such as hallucina-
tions and safety risks. Editing a model’s internal knowledge through the
locate-and-edit paradigm has proven a cost-effective alternative to retrain-
ing, though current unstructured approaches—especially window-based
autoregressive methods—often disrupt the causal dependency between
early memory updates and later output tokens. In this work, we first
theoretically analyze these limitations and then introduce Matryoshka Un-
structured Knowledge Editing (µKE), a novel memory update mechanism
that preserves such dependencies via a Matryoshka-style objective and
adaptive loss coefficients. Empirical evaluations on two models across five
benchmarks demonstrate that µKE improves edit efficacy by up to 12.33%
over state-of-the-art methods, and remains robust when applied to diverse
formatted edits, underscoring its potential for effective unstructured knowl-
edge editing in LLMs.

1 Introduction

Large Language Models (LLMs) are increasingly powering a diverse range of applica-
tions—from conversational agents (Wang et al., 2024a; Guo et al., 2024) to complex scientific
research (OpenAI, 2025). Despite their impressive capabilities, these models are typically
trained on static datasets, which can result in issues such as hallucinations (Huang et al.,
2025) and other safety risks (Yuan et al., 2024; Xu et al., 2024). Targeting light-weight main-
tenance of LLMs, model editing (Dai et al., 2022; Mitchell et al., 2022b) has emerged as
a cost-effective method for updating a model’s internal knowledge without the need for
extensive retraining. In particular, the locate-and-edit paradigm (Meng et al., 2022; 2023)
provides a promising approach by precisely identifying the internal components where
factual information is stored and selectively modifying them to incorporate new, accurate
data, all while minimizing collateral changes to unrelated knowledge.

Early locate-and-edit methods (Dai et al., 2022; Meng et al., 2023) primarily focus on editing
structured knowledge in the form of (subject, relation, object) triplets, thereby limiting their
applicability to more complex, real-world scenarios. Recently, AnyEdit (Jiang et al., 2025)
has introduced a chunking strategy that decomposes the task of editing a long target into
autoregressively editing a sequence of windows. As illustrated in Figure 1, the editing
target answer regarding “the critical temperature change of a superconducting magnet”, for
example, can be segmented into several sentences as windows. These windows then serve
as new targets to be edited one by one, in an autoregressive style, to realize the total effect
of editing the whole answer. By this means, AnyEdit extends locate-and-edit algorithms,
originally designed for structured editing, to handle unstructured editing tasks.

Despite the significant improvement of AnyEdit to existing locate-and-edit methods such
as MEMIT (Meng et al., 2022) and AlphaEdit (Fang et al., 2024) on unstructured knowl-

∗ Co-first and corresponding authors.

1

Published as a conference paper at COLM 2025

+

(a) One-For-All Memory Update

+

(b) Window Memory Update

+

(c) Matryoshka Memory Update

+ +

layer

activation

forward pass

backward pass

memory shift

old memory

The critical temperature (Tc) of a
superconducting material is the temperature
below which the material exhibits
superconductivity, i.e., zero electrical resistance.

How does the critical temperature of a superconducting magnet change with an increase in the magnetic field strength?

The critical temperature is
dependent on the magnetic field
strength applied to the
superconducting material.

As the magnetic field strength
increases, the critical temperature
of the superconducting magnet
decreases

Question

Answer
(Edit Target)

Working Memories
at lWM

strength

?

The

...

...

The

...

resist

ance

Window 1 Window 2 Window 3

The

...

The

resist

ance

The

The

ance

...

mateiral

...

The

The

ance

mateiral

...

...

mateiral

...

......

Window
Boundary

1 update order

1

2

1

2

1

Figure 1: Comparison between different unstructured editing paradigms in a unified
working memory update view. As shown in the figure, the One-for-All paradigm in (a)
updates one memory for the entire long edit target to be edited, being limited by the
capacity of one memory shift. The window memory strategy in (b) splits the long target into
windows and updates multiple memories autoregressively, however, overlooking memory
dependency from former memories to latter target outputs. Our Matryoshka memory
update in (c) treats each memory to be potentially contributing to all the target tokens
afterwards, maintaining proper dependency while benefiting from the capacity of multiple
memory shifts.

edge editing, the window-based autoregressive editing strategy suffers from an intrinsic
limitation when combined with the locate-and-edit paradigm. Given that locate-and-edit
approaches first compute the updates to the model’s internal states at certain located layers
(which we denote as working memories) and map these updates back to model weights
subsequently, a window-based fully autoregressive process implies that there exists no
dependency between edited internal states and output tokens at later positions, which is not
optimal if we consider a fully retrained model as the relation between internal states and
later outputs should be causal. This proposes a general question for unstructured editing
that sequentially updates multiple working memories: how can we properly encode the memory
dependency after a sequence of edits on a long target?

To investigate this question, we first provide a theoretical analysis of the issue regarding
missing working memory dependency in AnyEdit. Then, based on the analysis, we present
a simple yet effective Matryoshka-style memory update mechanism for unstructured locate-
and-edit, which together we call Matryoshka Unstructured Knowledge Editing (µKE). Our
approach conceptualizes the update in an early working memory as a condensed representa-
tion shift partially covering all subsequent edit targets, thereby preserving causality between
the edited memory and later token distributions. To enforce this dependency and also edit
efficacy for each window, µKE incorporates a Matryoshka-style objective that balances the
contribution of one memory update to edits to each range of edit targets. Additionally, we
introduce memory update dynamics-informed adaptive coefficients for the loss terms to
facilitate better optimization. Comprehensive empirical results on two models and five
benchmarks demonstrate that µKE outperforms AnyEdit, up to 12.33% in edit efficacy, and
is more robust to edits of diverse formats, underscoring its effectiveness in unstructured
knowledge editing. 1

1Our code and data are available at https://github.com/PurCL/muke.

2

https://github.com/PurCL/muke

Published as a conference paper at COLM 2025

2 Preliminaries

Autoregressive LLM We consider a transformer architecture LLM (Vaswani et al., 2017) G
consisting of L layers to be edited. Given an input X = [x1, · · · , xT], the l-th transformer
decoder layer forwards internal state at position t as

hl
t = hl−1

t + al
t + ml

t, al
t = Attn(hl−1

0 , hl−1
1 , · · · , hl−1

t), ml
t = MLP(hl−1

t + al
t). (1)

We omit some components in a transformer, such as the embedding layer and layer nor-
malization to simplify the discussion. The final layer output projected by the LM head and
softmax will produce a conditional distribution, denoted as PG(·|X). To edit such an LLM
is to maximize the conditional probability PG(Y∗|X) given a prompt X and edit target Y∗

with constraints.

Locate-and-Edit Directly applied to Unstructured Editing The locate-and-edit paradigm
typically comprises three stages. The first stage leverages causal tracing (Meng et al., 2022)
to locate certain layers that are likely to store knowledge. We denote the top located layer
as lWM, where the output hidden states are hypothesized to contain the memory of the
LLM w.r.t. a (subject, relation) or in general a prompt. In the second stage, one hidden state
at a certain position of lWM’s outputs will be considered as the specific working memory
that requires updates to enforce editing. To update this outdated memory, a bias term δ
(referred to as “memory shift” in Figure 1) is added to this hidden state by hooking hi,
which is an operation supported by popular ML libraries. The transformer execution is
then modified from the original G(· · · , hi, · · ·) to G(· · · , hi + δi, · · ·), producing a new
distribution PG(hi+δ)(·|X)2 which allows gradient descent to optimize δ given the editing
target. In the final stage, a batch update process will map the working memory updates to
static model weight shifts with constrained optimization (e.g., with locality constraints). For
more details, please refer to Appendix C.

As shown in Figure 1.(a), directly applying locate-and-edit to unstructured editing as studied
in UnKE (Deng et al., 2024) and AnyEdit (Jiang et al., 2025) is implemented as (1) setting
the position of the memory shift δglobal at the point where the first token of the target is
generated (or equivalently the last input token of the prompt); and (2) optimize δglobal for
the target Y = [y1, · · · , yM] by minimizing the following objective,

Lone(δglobal) = − 1
M

M

∑
i=1

log PG(h1+δglobal)
(yi|X, y<i), (2)

which assumes that working memory updates at one position can edit all the later genera-
tions. We denote this kind of memory update as the One-for-All strategy.

Window-by-window Unstructured Editing The bottleneck of this strategy is the limited
capacity of working memory, represented by activation at a single time step. AnyEdit (Jiang
et al., 2025) proposes to overcome such bottleneck by splitting down the original long
edit target into windows Y1, · · · , YN , where Y = [Y1; · · · ; YN]. This Window-by-Window
strategy as shown in Figure 1.(b) leverages multiple working memory updates in a fully
autoregressive way w.r.t. windows conditioning on all their previous contexts, i.e., a series
of working memories h1, · · · , hN located at the starting time step of each window will be
updated via corresponding δ1, · · · , δN as shifts for one long target3. The autoregressive
process of the model distribution can be described as

PGi(h1,··· ,hi)
→ PGi(h1+δ1,··· ,hi)

→ · · · → PGi(h1+δ1,··· ,hi+δi)
, (3)

2We only highlight core states here for the purpose of differentiating distributions.
3Here we abuse the index notation a little bit: the index i of hi and δi actually maps to the last token

position before the i-th window in the full context.

3

Published as a conference paper at COLM 2025

where the optimization of each δi has the following objective to minimize negative log
likelihood (NLL) of the target window given previous contexts,

Lwin(δi) = − 1
|Yi|

|Yi |

∑
j=1

log PG(h1+δ∗1 ,··· ,hi−1+δ∗i−1,hi+δi)
(Yi,j|X, Y<i, Yi,<j), (4)

where each δ∗ denotes an already optimized memory shift for an early window.

3 Matryoshka Unstructured Knowledge Editing

In this section, we first analyze the limitations of the window-by-window memory update
strategy (Section 3.1) and then discuss the designs of µKE (Section 3.2, 3.3).

3.1 Window-by-Window Update Overlooks Memory Dependency

The window-by-window strategy overlooks the influence of one memory update on future
windows except for the first one. To theoretically understand this limitation, we analyze
the difference between two scenarios in updating working memories for one edit target: (1)
progressively updating a series of working memories w.r.t. each window, and (2) updating
all the working memories in parallel w.r.t. the full target.

For scenario (1), we can derive the gradient of the window-by-window objective from Eq. 4,

∇Lwin(δi) = − 1
|Yi|

|Yi |

∑
j=1

∂ log PG(h1+δ∗1 ,··· ,hi−1+δ∗i−1,hi+δi)(Yi,j|X, Y<i, Yi,<j)

∂δi
∇δi. (5)

For scenario (2), the objective is simply the NLL of the full target sequence,

Lprl(δ1, · · · , δN) = − 1
M

log PG(h1+δ1,··· ,hN+δN)(Y|X) =
1
M

N

∑
i=1

− log PG(h1+δ1,··· ,hi+δi)(Yi|X, Y<i), (6)

and by the chain rule, the gradient of Lprl can be decomposed into

∇Lprl(δ1, · · · , δN) =
1
M

N

∑
i=1

i

∑
j=1

∂ − log PG(h1+δ1,··· ,hi+δi)(Yi|X, Y<i)

∂δj
∇δj (7)

=
1
M

N

∑
j=1

N

∑
i=j

∂ − log PG(h1+δ1,··· ,hj+δj)(Yi|X, Y<i)

∂δj
∇δj (8)

=
1
M

N

∑
j=1

|Yj|∇Lwin(δj) +
N

∑
i=j+1

∂ − log PG(h1+δ1,··· ,hj+δj)(Yi|X, Y<i)

∂δj
∇δj

 . (9)

We can see in Eq. 9 that if we optimize δs together to maximize the likelihood of the entire
target, there will be extra gradients, aside from ∇Lwin(δi), for δj to optimize for all later
windows. This indicates the necessity of memory dependency, which is completely ignored
in the window-by-window objective.

A naive question would be: why not directly optimize δs using Lprl? Empirically, we find
that parallel optimization performs less well than sequential one, potentially due to the
optimization difficulty with a larger parameter space when combined with the subtle
designs like normalization of δ before each optimization step and the batch update strategy
in locate-and-edit algorithms. We add more discussions in Appendix C.3.

4

Published as a conference paper at COLM 2025

The critical temperature (Tc) of a
superconducting material is the temperature
below which the material exhibits
superconductivity, i.e., zero electrical resistance.

The critical temperature is
dependent on the magnetic field
strength applied to the
superconducting material.

As the magnetic field strength
increases, the critical temperature
of the superconducting magnet
decreases

Objective for

Objective for
Objective for

Target Figure 1
Target Figure 2

Target Figure 3

Figure 2: Matryoshka-style working memory update. For each
δi, the objective is a weighted sum of negative log-likelihood of all
the target figures starting from window i conditioned on previous
contexts.

0 1 2 3 4 5

Key figure

0
1

2
3

4
5

Q
ue

ry
 fi

gu
re

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: An example
of affinities between
target figures.

3.2 A Matryoshka-Style Working Memory Update Objective

To overcome the limitations of window-by-window strategy, we propose a Matryoshka-
style memory update objective Lµ for µKE, enabling gradient flows from all latter tokens to
former working memories for optimization when performing sequential updates, as shown
in Figure 1.(c). This memory update objective targets a series of condensed representation
shifts (partially) covering the corresponding subsequent edit target in the sequential update
process. A detailed elaboration of Lµ is in Figure 2, which is essentially the mean of weighted
NLL loss of all (Yi), (Yi, Yi+1), · · · , (Yi, · · · , YN) for δi, formally expressed as follows,

Lµ(δi)=− 1
N−i+1

[
λi,i log PG(h1+δ∗1 ,··· ,hi−1+δ∗i−1,hi+δi)(Yi|X, Y<i)+λi,i+1 log PG(··· ,hi+δi)(Yi, Yi+1|X, Y<i)

+ · · ·+ λi,N log PG(··· ,hi+δi)(Yi, · · · , YN |X, Y<i)
]
. (10)

We call (Yi), (Yi, Yi+1), · · · , (Yi, · · · , YN) target figures, in contrast to windows, which sim-
ulate the wooden components of a Matryoshka doll. Intuitively, the objective shows that
the edited working memory should contribute to the successful generation of all target
figures, instead of biasing towards generating the first window Yi as in Lwin. The λi,j are
the adaptive coefficients to balance the importance of target figures in the objective, which
will be adjusted per sample. We will discuss it in the next section.

Another way to understand this Matryoshka-style objective, from the perspective of win-
dows, is that the memory update should prioritize former windows, while covering latter
ones as much as possible. Despite the dynamic coefficients here, if we reorganize it into the
sum of window-wise NLLs,

Lµ(δi) = − 1
N − i + 1

N

∑
j=i

N

∑
k=j

λi,k︸ ︷︷ ︸
coefficient for window j

log PG(··· ,hi+δi)(Yj|X, Y<j), (11)

we will see that the loss assures that the coefficients of terms w.r.t. early windows are larger
than those of later ones, assuming λi,j > 0. Given that memories are updated sequentially,
there is no second chance for early windows to be edited. Hence, memories need more
aggressive optimization towards early windows in the edit target, leaving other parts to later
sequential updates. This also explains why we don’t directly apply One-for-All sequentially
for Matryoshka memory update, as it treats all windows evenly.

3.3 Adaptive Coefficients Informed by Affinity Between Edit Target Figures

In practice, Lµ has to deal with data samples with different edit difficulty, given fixed
learning rates and optimization steps, which is a common practice in existing locate-and-
edit algorithms. This has not been a big problem in structured editing, as the object to be
edited is typically one token (Meng et al., 2023). However, in the scenario of unstructured

5

Published as a conference paper at COLM 2025

editing where the target length is not constant, the variance between data samples gets
larger. Empirically, we find that edit efficacy dramatically varies across different target
lengths with a static objective (Figure 5).

Thus, we introduce adaptive coefficients λi,j to balance the contribution of intermediate
terms in Lµ to mitigate such issues. Inspired by recent studies in data selection via gradient-
based data influence in LLM fine-tuning (Xia et al., 2024), we deem that the coefficients of
target figures in Lµ can leverage information from the direction of gradients of memory
updates. In Lµ, terms regarding target figures share similarity in gradient directions with
each other during optimization due to the Matryoshka-style nature (that they overlap). We
denote such similarity between target figures as affinity, illustrated in Figure 3. As the term of
the first figure, which is also the first window, has the highest weight in Lµ as demonstrated
in Eq. 11, target figures that have better affinity with the first one will benefit more from
this gradient direction during optimization. This potentially leads to an overemphasis on
these target figures and the neglect of the rest. Hence, we must compensate for the figures
that have less affinity for balance. This results in the coefficients negatively correlated with
affinity with the first figure for each δi, defined as follows,

λi,j = 2 − 1
Taff

Taff

∑
t=1

〈
∇δt

i
log PG(··· ,hi+δt

i)
(Yi|X, Y<i),∇δt

i
log PG(··· ,hi+δt

i)
(Yi, · · · , Yj|X, Y<i)

〉
, (12)

where Taff is the optimization steps of δi when minimizing NLL of the first figure (window
i) to obtain a series of δt

i s, and ⟨·, ·⟩ is cosine similarity. Unlike in data selection for LLM
pre-training and fine-tuning, where we have to deal with a gigantic parameter space for
gradient similarity computation, thanks to the working memory update design in the locate-
and-edit paradigm, the gradient space is much smaller, allowing for efficient similarity
computation.

4 Experiment Setup

In this section, we briefly introduce the setup of our experiments. For more details, please
refer to Appendix A.

Models and Baselines We conducted experiments on two base LLMs, Qwen2.5-7B-
Instruct (Qwen Team, 2024) and Llama3-8B-Instruct (Meta, 2024). For baselines, we compare
against original (pre-edited) models, MEMIT (Meng et al., 2023), AlphaEdit (Fang et al.,
2024), UnKE (Deng et al., 2024), AnyEdit and AnyEdit∗(Jiang et al., 2025).

Benchmarks We adopt the benchmarks from AnyEdit to evaluate µKE, including Un-
KEBench (Deng et al., 2024), the AKEW benchmark (Wu et al., 2024), and EditEvery-
thing (Jiang et al., 2025), among which AKEW consists of two subsets: AKEW-CounterFact
and AKEW-MQuAKE. We add SelfCheckGPT (Manakul et al., 2023) to benchmark hallu-
cination reduction efficacy (Appendix D.1). For locality evaluation, we assess whether
knowledge editing preserves the model’s general capabilities using two benchmarks:
MMLU (Hendrycks et al., 2021a;b) and IFEval (Zhou et al., 2023).

Metrics We report BLEU (Papineni et al., 2002), besides ROUGE-L (Lin, 2004) and
BERTScore (Zhang* et al., 2020) that have been reported in AnyEdit. These metrics measure
the similarity between model’s edited outputs and original outputs to assess the effective-
ness of editing algorithms. We run three trials for each experiment and report mean values
in the main results. Standard deviations are reported in Appendix D.4 due to space limit.

5 Results

5.1 Long-Form Knowledge Editing Evaluation

To evaluate the long-form knowledge editing ability, we test µKE along with baseline
methods on UnKEBench, AKEW-CounterFact, and AKEW-MQuAKE. Similarly to AnyEdit,
we instantiate two versions of µKE: one based on MEMIT, which we denote as exactly

6

Published as a conference paper at COLM 2025

UnKEBench AKEW (CounterFact) AKEW (MQuAKE)

Ori. Para. Ori. Para. Ori.LLM Method

BLEU BERT R-L BLEU BERT R-L BLEU BERT R-L BLEU BERT R-L BLEU BERT R-L
Ll

am
a3

-8
B-

It

Pre-edited 20.09 71.38 25.49 19.80 71.29 25.31 13.89 68.33 18.76 15.81 42.22 13.18 18.84 69.79 21.16

MEMIT 24.97 76.21 30.03 22.51 74.50 28.29 31.88 75.83 31.23 17.52 47.27 15.88 26.61 69.93 25.75
AlphaEdit 21.43 73.76 26.65 20.38 72.85 25.88 23.52 72.54 24.98 16.39 45.13 14.07 22.57 69.78 22.74
AnyEdit 77.91 95.69 90.36 66.29 92.38 80.51 86.34 97.86 95.51 39.48 65.31 46.26 87.28 97.38 94.28

µKE 90.24 97.70 91.75 76.72 93.78 77.59 94.72 98.75 93.76 41.22 63.72 37.40 90.53 97.38 89.79

UnKE 93.20 98.09 92.94 78.77 93.33 78.94 98.26 99.61 98.25 38.63 60.28 34.40 95.04 98.93 94.40
AnyEdit* 99.54 99.79 99.62 72.96 91.63 77.48 99.93 99.99 99.96 40.25 62.95 42.71 99.79 99.97 99.87

µKE∗ 99.81 99.97 99.79 77.82 93.75 80.08 99.96 99.99 99.96 43.60 64.53 40.93 99.91 99.99 99.94

Q
w

en
2.

5-
7B

-I
t

Pre-edited 20.92 72.58 27.64 20.51 72.18 26.60 28.15 69.66 20.98 29.54 52.15 19.31 24.12 69.05 21.03

MEMIT 45.18 78.10 38.21 40.89 76.63 34.19 45.08 77.16 38.95 32.99 56.15 25.80 41.54 71.61 35.46
AlphaEdit 49.75 80.57 42.93 45.37 78.41 38.42 49.88 80.42 45.35 34.65 56.94 27.74 45.14 72.76 39.83
AnyEdit 86.86 96.85 91.68 64.94 90.11 71.47 88.52 97.29 91.94 38.10 62.72 39.43 86.69 96.48 90.57

µKE 96.34 99.02 97.02 75.44 92.25 75.34 95.23 98.76 95.57 45.20 64.89 39.32 94.75 98.42 95.45

UnKE 91.72 96.85 90.79 56.79 83.85 51.97 91.87 97.54 91.11 38.45 59.15 29.16 88.04 95.15 86.31
AnyEdit* 96.13 98.85 97.30 47.17 80.75 50.96 96.70 99.10 97.48 32.02 57.29 31.94 97.44 99.49 97.70

µKE∗ 99.27 99.61 99.24 50.69 81.57 48.33 99.68 99.89 99.67 35.20 57.46 29.41 99.38 99.74 99.33

Table 1: Performance of different methods on long-form knowledge editing. “Pre-
edited” refers to the original pre-trained LLM. Best results within structured-derived or
unstructured-derived methods are highlighted in blue and bold; the overall best result
across both groups is highlighted with a blue background. “Ori.” denotes the performance
of the edited model on the original questions and is analogous to edit success used in earlier
works. “Para.” measures performance on paraphrased versions of the original questions,
reflecting the generalizability of the edited knowledge.

“µKE”, and the other based on UnKE, denoted as “µKE∗”. This allows us to directly compare
with AnyEdit and AnyEdit∗, which are also based on these two locate-and-edit algorithms.
Unless otherwise specified, we set the edit batch size to 1 and the decoding temperature to
0.001, following AnyEdit.

As shown in Table 1, µKE demonstrates significant improvements over AnyEdit in BLEU
scores, up to 12.33% with the original question and 10.5% with the paraphrased question of
absolute improvement, while producing higher or competitive ROUGE-L scores in most
cases. This demonstrates the effectiveness of a Matryoshka-style objective that models
memory dependency in unstructured editing. µKE∗ further amplifies this performance,
achieving near-perfect scores in BLEU, ROUGE-L, and BERTScore, reaching values as high
as 99.996%, bringing the editing success in close proximity to 100%.

We observe that there are cases where MEMIT-based methods surpass UnKE-based methods
in results regarding paraphrased questions, which indicates better generalizability, especially
when editing Qwen2.5-7B-Instruct. We believe this can be attributed to the difference
in total editable parameters, in addition to base LLM and layer localization differences,
which are also fundamental. MEMIT-based methods rely on the core assumption that
transformer feedforward layers are key value memories (Geva et al., 2021) and only update
the down projection layer. On the other hand, UnKE-based methods allow updates in full
transformer layers using gradient descent, potentially leading to the overfitting (Zhang
et al., 2024). Overall, the results indicate that either µKE or µKE∗ consistently achieves
the strongest generalization performance across the majority of evaluation settings. For
example, µKE has significantly better results for paraphrased questions than UnKE on
UnKEBench with Qwen2.5-7B-Instruct (+18.65% BLEU, +8.50% BERTScore, and +23.37%
Rouge-L). Meanwhile, it also performs better than the MEMIT-based AnyEdit counterpart.

5.2 Diverse-Formatted Knowledge Editing Evaluation

To further evaluate the effectiveness of our proposed method for knowledge editing in
diverse domains and problem structures, we test it on EditEverything, which encompasses a

7

Published as a conference paper at COLM 2025

Math *

Code *

Poetry *

News *

Chemistry *

Math
Code

Poetry

News

Chemistry

0
20
40
60
80
100

Llama3-8B-Instruct

Math *

Code *

Poetry *

News *

Chemistry *

Math
Code

Poetry

News

Chemistry

0
20
40
60
80
100

Qwen2.5-7B-InstructKE

AnyEdit
AlphaEdit

Figure 4: Performance comparison between µKE and
baseline methods on long-form, diverse-formatted
knowledge. Knowledge types without * represent
the metric Rouge-L, while those with * indicate
BERTScore.

80 100 120 140 160
Number of tokens

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
L

E
U

sequential-NLL
AnyEdit

Matryoshka-Vanilla
Matryoshka-Affinity

Figure 5: BLEU of answers gener-
ated by edited model varying in
original answer length.

wide range of domains, including mathematics, poetry, news, programming, and chemistry.
Figure 4 shows the edit success of µKE and baseline methods. µKE outperforms AnyEdit
across all sub-domains of the EditEverything dataset, demonstrating the effectiveness of µKE
in handling diverse-formatted editing tasks. Moreover, µKE exhibits robust and consistent
performance across different domains, whereas AnyEdit shows a noticeable degradation
on the Poetry subset, reflected by a significant drop in ROUGE-L scores on both evaluated
LLMs. We include an example demonstrating the effectiveness of µKE over AnyEdit on the
poetry subset of the EditEverything dataset in Appendix D.7.1.

5.3 General Capability Preservation Evaluation

How a model preserves its general capability after editing, i.e., the “locality” of edited
models, has been a core aspect of evaluating editing algorithms. To assess whether an edited
LLM preserves general functionality, we focus on two core capabilities of instruction-tuned
models: natural language understanding (MMLU) and instruction following (IFEval).

MMLU IFEval

LLM Method acc strict loose

Ll
am

a3
-8

B-
It Pre-edited 67.16±0.38 69.50±1.98 75.60±1.85

AnyEdit 65.81±0.12 64.21±0.12 64.21±0.65
µKE 65.59±0.12 63.01±0.66 71.56±0.61

AnyEdit∗ 65.72±0.12 70.13±0.62 75.91±0.58
µKE∗ 64.99±0.12 69.13±0.63 75.15±0.59

Q
w

en
2.

5-
7B

-I
t Pre-edited 73.45±0.36 70.24±1.97 73.57±1.90

AnyEdit 72.21±0.11 65.56±0.65 68.74±0.63
µKE 71.64±0.11 60.87±0.66 64.15±0.65

AnyEdit∗ 73.28±0.11 70.89±0.62 73.71±0.60
µKE∗ 73.25±0.11 70.63±0.62 73.61±0.60

Table 2: Evaluation results on MMLU and IFE-
val for pre-edited and post-edited LLMs.

As shown in Table 2, both µKE and
AnyEdit generally maintain stable perfor-
mance in preserving original model capa-
bilities while integrating new knowledge.
We notice some model-wise difference as
the performance of AnyEdit drops a bit on
IFEval with Llama3-8B-It and similarly µKE
with Qwen2.5-7B-It. We think this issue is
partly due to the granularity of localization.
Note that AnyEdit and µKE inherit pre-
defined editing layer selection from MEMIT
and UnKE, where we consider all working
memory shifts happen on the same layer(s).
Intuitively, an unstructured editing target,
which can be long, can encompass knowl-
edge of different levels, which likely re-
quires more fine-grained designs in localiza-
tion and corresponding updates. This further echoes the importance of memory dependency
through multiple layers for unstructured knowledge editing.

6 Analysis

We conduct further analysis to justify some design choices in µKE.

8

Published as a conference paper at COLM 2025

5 10 15 20 25
steps

0.4

0.6

0.8

1.0

B
L

E
U

Original

5 10 15 20 25
steps

0.4

0.6

0.8

1.0

R
O

U
G

E
-L

Original

5 10 15 20 25
steps

0.25

0.30

0.35

0.40

0.45

0.50

B
L

E
U

Paraphrased

5 10 15 20 25
steps

0.20

0.25

0.30

0.35

0.40

0.45

R
O

U
G

E
-L

Paraphrased

parallel-NLL sequential-NLL AnyEdit Matryoshka-Vanilla Matryoshka-Affinity

Figure 6: Comparison of memory update optimization stability between different methods.

10 20 30 40 50 60 70 80 90 100
Window Size

Ori. BLEU

Ori. BERT

Ori. R-L

Para. BLEU

Para. BERT

Para. R-L

M
et

ri
c

92.28 89.53 93.09 89.85 91.34 93.25 91.62 96.39 93.07 89.62

98.02 97.56 98.06 97.81 97.56 98.42 97.81 99.11 98.57 96.70

92.48 91.04 93.21 92.23 91.78 94.59 92.97 96.70 92.75 89.58

80.68 75.93 79.53 78.44 77.72 79.61 81.14 82.16 76.75 73.78

94.45 93.71 93.69 93.37 93.46 94.05 94.06 94.97 92.79 91.25

82.64 77.39 80.45 78.76 80.27 80.24 81.31 82.76 78.38 73.33

UnKEBench (Row-wise Normalized)

10 20 30 40 50 60 70 80 90 100
Window Size

Ori. BLEU

Ori. BERT

Ori. R-L
M

et
ri

c

91.83 91.90 91.74 92.79 92.40 94.62 91.67 91.55 92.61 92.61

97.71 97.90 97.00 97.41 98.18 98.88 97.70 97.71 96.98 97.74

92.13 92.12 91.58 93.33 92.78 93.97 92.18 91.51 91.78 93.59

MQuAKE (Row-wise Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: µKE performance with various window sizes.

Performance of µKE is less affected by edit target length. We compare the performance
of different memory update methods regarding different data samples of various lengths.
Here, “parallel-NLL” denotes the simultaneous updates of multiple working memories
with an NLL loss as mentioned in Section 3.1; “sequential-NLL” denotes applying One-
for-All (NLL starting from the corresponding window of the memory to the end of the
target) to sequential memory update; “Matryoshka-Vanilla” denotes Lµ with constant
coefficients λi,j = 1; and “Matryoshka-Affinity” denotes Lµ. We adopt identical window
size (20), learning rate (0.5), and number of optimization steps (25) for all methods for fair
comparison. We use only 100 data samples for this study. As shown in Figure 5, we observe
that the BLEU scores of answers generated by edited models typically vary greatly for
static objectives such as AnyEdit’s window-based objective or “Matryoshka-Vanilla”. The
adaptive Lµ has shown the best robustness to target length.

Lµ has better optimization stability. Under the same setting as described above, we
compare the optimization stability of different methods. We evaluate each method when
optimized with steps ranging from 5 to 25 and observe the performance change. As shown
in Figure 6, we can see that (1) parallel optimization of multiple memory updates is harder
than sequential due to increased parameter space; (2) both Matryoshka-style methods
perform better than sequential-NLL, indicating the significance of weighting in objective
design; (3) Lµ with dynamic coefficients is more stable than with static ones (smoothly
increases), especially when we refer to results regarding paraphrased questions.

Impact of window size on µKE performance. As shown in Figure 7, we conduct an
ablation study to evaluate the impact of window size on the performance of µKE. Keeping
all other settings identical to those described above, we apply µKE to edit Llama3-8B-
Instruct using window sizes ranging from 10 to 100 tokens. The results suggest that µKE
’s performance is relatively insensitive to window size, with variations across all metrics
typically within 3%. Importantly, our reported results do not rely on tuning for an optimal
window size; instead, we select the window size used in our main experiments based on a
few initial trials. Interestingly, we observe dataset-wise bias: for UnKEBench, a window
size of 80 yields the best results across all three metrics, whereas for MQuAKE, a window

9

Published as a conference paper at COLM 2025

size of 60 performs best. This observation suggests the potential for further improvement by
dynamically selecting the window size based on the characteristics of the input data, which
we leave as a promising direction for future work.

7 Related Work

Unstructured Editing of LLMs Early research in model editing focused on structured
factual updates, positing that transformer layers store discrete key–value pairs where editing
a specific neuron or a set of neurons (Geva et al., 2021; Meng et al., 2022; 2023) could correct
erroneous outputs. However, this perspective does not fully capture the intricacies of
unstructured, free-form knowledge. Recently, new benchmarks and methods such as DUnE
(Akyürek et al., 2023), AKEW (Wu et al., 2024), UnKE (Deng et al., 2024), and AnyEdit (Jiang
et al., 2025) have emerged. These studies extend the editing paradigm to handle complex,
longer-form, and noisier textual content that traditional structured methods cannot easily
address.

Model Editing Methods Model editing strategies have been explored in width and depth.
The locate-then-edit framework (Dai et al., 2022; Meng et al., 2022), which targets and
modifies specific neurons, weight matrices or layers responsible for factual inaccuracies,
has been refined by methods like RECT (Gu et al., 2024) and AlphaEdit (Fang et al., 2024).
Retrieval-based methods (Mitchell et al., 2022b; Zheng et al., 2023) and meta-learning
approaches (Mitchell et al., 2022a; Tan et al., 2024) offer alternatives that adjust outputs
without directly altering internal parameters. Further advancements in lifelong or continual
editing—using mechanisms such as adapter modules (Hartvigsen et al., 2024; Wang et al.,
2024b) and minimal weight updates (Sutton et al., 2024)—aim to support sequential and
scalable updates. There are also investigations into multi-hop editing (Zhong et al., 2023),
and task arithmetics (Ortiz-Jimenez et al., 2024; Ilharco et al., 2023).

8 Conclusion

In this work, we addressed key limitations in unstructured knowledge editing by analyzing
the disruption of causal memory dependencies inherent in existing window-based autore-
gressive methods. We introduced Matryoshka Unstructured Knowledge Editing (µKE), a
novel framework that leverages a Matryoshka-style memory update mechanism and adap-
tive loss coefficients to preserve the critical dependency between early memory updates
and subsequent output tokens. Comprehensive empirical evaluations on two models across
five benchmarks demonstrate that µKE not only enhances editing efficacy compared to
state-of-the-art techniques but also provides a robust approach to updating large language
models.

Limitations & Future Work The locate-and-edit paradigm for unstructured editing is
tightly coupled with the optimization process embedded in its workflow. Although µKE
alleviates this issue through a sample-wise adaptive loss design, further exploration into
more effective and generalizable optimization strategies remains an important direction for
future work.

Additionally, our evaluation relies on existing benchmarks for unstructured knowledge
editing. While these benchmarks cover diverse formats and target lengths, they lack explicit
annotations of fine-grained knowledge units within longer targets. As a result, they provide
limited insight into the actual efficacy of edits and other nuanced evaluation dimensions.
Future research should aim to design more comprehensive benchmarks and metrics that
capture a broader range of editing behaviors—such as editing multiple interdependent
knowledge pieces while maintaining consistency with causal memory dependencies.

Finally, knowledge units within long edit targets are not necessarily uniform in length like
fixed-size windows. A promising avenue for future work involves dynamically identify-
ing and localizing knowledge units within raw input sequences and targets. Achieving
this would likely require developing a more intrinsic and fine-grained model of memory
dependency and causality in autoregressive language models.

10

Published as a conference paper at COLM 2025

References
Afra Akyürek, Eric Pan, Garry Kuwanto, and Derry Wijaya. Dune: Dataset for unified

editing. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 1847–1861, 2023.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge
neurons in pretrained transformers. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8493–8502, 2022.

Jonas Karolis Degutis, Denis Chaimow, Daniel Haenelt, Moataz Assem, John Duncan, John-
Dylan Haynes, Nikolaus Weiskopf, and Romy Lorenz. Dynamic layer-specific processing
in the prefrontal cortex during working memory. Communications biology, 7(1):1140, 2024.

Jingcheng Deng, Zihao Wei, Liang Pang, Hanxing Ding, Huawei Shen, and Xueqi Cheng.
Unke: Unstructured knowledge editing in large language models. arXiv preprint
arXiv:2405.15349, 2024.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Xiang Wang, Xiangnan He, and Tat-
seng Chua. Alphaedit: Null-space constrained knowledge editing for language models.
arXiv preprint arXiv:2410.02355, 2024.

Emily S Finn, Laurentius Huber, David C Jangraw, Peter J Molfese, and Peter A Bandettini.
Layer-dependent activity in human prefrontal cortex during working memory. Nature
neuroscience, 22(10):1687–1695, 2019.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward
layers are key-value memories. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 5484–5495, 2021.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and
Nanyun Peng. Model editing harms general abilities of large language models: Regular-
ization to the rescue. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 16801–16819, 2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of
progress and challenges. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, pp. 8048–8057, 2024.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh
Ghassemi. Aging with grace: Lifelong model editing with discrete key-value adaptors.
Advances in Neural Information Processing Systems, 36, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and
Jacob Steinhardt. Aligning ai with shared human values. Proceedings of the International
Conference on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of
the International Conference on Learning Representations (ICLR), 2021b.

Graham James Hitch and AD Baddeley. Verbal reasoning and working memory. The
Quarterly Journal of Experimental Psychology, 28(4):603–621, 1976.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang,
Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open questions. ACM
Transactions on Information Systems, 43(2):1–55, 2025.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2023.

11

Published as a conference paper at COLM 2025

Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guojun Ma, Mingyang Wan, Xiang Wang,
Xiangnan He, and Tat seng Chua. Anyedit: Edit any knowledge encoded in language
models. 2502.05628, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computa-
tional Linguistics. URL https://aclanthology.org/W04-1013/.

Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 9004–9017, 2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372,
2022.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-
editing memory in a transformer. In The Eleventh International Conference on Learning
Representations, 2023.

Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning.
Fast model editing at scale. In International Conference on Learning Representations, 2022a.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning, pp.
15817–15831. PMLR, 2022b.

OpenAI. Introducing deep research, 2025. https://openai.com/index/
introducing-deep-research/.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the
tangent space: Improved editing of pre-trained models. Advances in Neural Information
Processing Systems, 36, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and
Dekang Lin (eds.), Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for
Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.
org/P02-1040/.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https:
//qwenlm.github.io/blog/qwen2.5/.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks.
Advances in neural information processing systems, 28, 2015.

Oliver Sutton, Qinghua Zhou, Wei Wang, Desmond Higham, Alexander Gorban, Alexander
Bastounis, and Ivan Tyukin. Stealth edits to large language models. In Conference on
Neural Information Processing Systems (NeurIPS), 2024.

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta
learning. In The Twelfth International Conference on Learning Representations, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

12

https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2407.21783
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at COLM 2025

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan
Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based
autonomous agents. Frontiers of Computer Science, 18(6):186345, 2024a.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei
Huang, and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model
editing of large language models. arXiv preprint arXiv:2405.14768, 2024b.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space
of feature covariance for continual learning. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition, pp. 184–193, 2021.

Xiaobao Wu, Liangming Pan, William Yang Wang, and Anh Tuan Luu. Akew: Assessing
knowledge editing in the wild. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2024. URL https://arxiv.org/abs/2402.18909.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. In International Conference on
Machine Learning, pp. 54104–54132. PMLR, 2024.

Xiangzhe Xu, Zian Su, Jinyao Guo, Kaiyuan Zhang, Zhenting Wang, and Xiangyu
Zhang. Prosec: Fortifying code llms with proactive security alignment. arXiv preprint
arXiv:2411.12882, 2024.

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen
Xu, Binglin Zhou, Fangqi Li, Zhuosheng Zhang, et al. R-judge: Benchmarking safety
risk awareness for llm agents. In Findings of the Association for Computational Linguistics:
EMNLP 2024, pp. 1467–1490, 2024.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, and Zhumin Chen. Uncovering
overfitting in large language model editing. arXiv preprint arXiv:2410.07819, 2024.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang.
Can we edit factual knowledge by in-context learning? In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 4862–4876, 2023.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi
Chen. Mquake: Assessing knowledge editing in language models via multi-hop questions.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 15686–15702, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv
preprint arXiv:2311.07911, 2023.

13

https://arxiv.org/abs/2402.18909
https://openreview.net/forum?id=SkeHuCVFDr

Published as a conference paper at COLM 2025

A Experiment Details

A.1 Evaluation Details

Locality To test general ability preservation, we evaluated edited models on the MMLU
benchmark (Hendrycks et al., 2021a;b) and the IFEval benchmark (Zhou et al., 2023). MMLU
is a multiple-choice test that covers a wide range of subjects to test general understanding.
IFEval evaluates responses to instruction-following prompts, measuring the fulfillment of a
wide range of natural language requests.

For MMLU, we use 5-shot prompts formatted as multi-turn conversations, with a batch size
of 8. For IFEval, we ran the edited models in a 0-shot setting with a batch size of 16, and
computed prompt-level accuracy under two settings: strict, which requires exact matches to
reference answers, and loose, which accepts semantically equivalent responses.

All experiments were conducted on an AWS EC2 p4d.24xlarge instance using four NVIDIA
A100 SXM4 GPUs (40GB each). Models were loaded in bfloat16. Chat templates were
applied during tokenization. For Qwen2.5-7B-Instruct models, we used the system prompt:
”You are Qwen, created by Alibaba Cloud. You are a helpful assistant.” For Llama3-8B-
Instruct models, we used: ”You are a helpful assistant.” We repeated each experiment
ten times, and we report the mean and standard error, reweighted using inverse-variance
weighting.

Reproducing the baseline We followed the experimental settings of AnyEdit and made
our best effort to replicate the baseline results. The key configurations are as follows: for the
MEMIT-based method, we edited layers 4 to 8 of the down-projection and used chunk sizes
of 40 and 50 tokens for the LLaMA 3 and Qwen 2.5 models, respectively, with no overlap.
Each chunk was optimized for up to 25 steps. For the UnKE-based method, we edited the
7th layer of both models using the same chunk sizes, with 50 optimization steps. Updates
to key-value representations were limited to a maximum of 25 steps. We conducted all
experiments on an AWS EC2 p5e.48xlarge instance, using the float32 data type. We repeated
each experiment three times and report the mean.

A.2 Implementation Details

For computing λi,j, we set Taff to 3 with a learning rate of 0.5. If not otherwise specified, we
optimize µKE for 25 steps, which is consistent with baselines for fairness.

Similarly to AnyEdit and AnyEdit∗, our µKE and µKE∗ are built on top of MEMIT and
UnKE. For Llama3-8B-Instruct, we set the window size to 30 tokens without overlap, and
for Qwen2.5-7B-Instruct, we set the window size to 20 tokens without overlap.

We use the same computing environment as the reproduction of baseline methods.

B Broader Definition of “Working Memory”

In this paper, we denote “working memories” as the specific hidden states corresponding
to the located layers that are hypothesized to contain the knowledge to be edited and can
be updated with a bias term using gradient descent. Conceptually, this can be connected
to the definition in human working memory in psychology (Hitch & Baddeley, 1976) and
cognitive neuroscience (Finn et al., 2019; Degutis et al., 2024). In short, both in human
cognition and in the locate-and-edit algorithms, “working memory” acts as a short-lived,
capacity-limited store that is actively manipulated (through attention or gradient steps) to
change future outcomes (behavioral response or token probabilities). The cognitive-science
emphasis on neural circuits in prefrontal/parietal areas echoes the µKE reliance on a specific
transformer layer (lWM) whose activations effectively serve the same functional purpose:
keeping relevant information “online” so that it can be selectively updated and then used to
guide subsequent processing.

14

Published as a conference paper at COLM 2025

C Locate-and-Edit Paradigm Details

We introduce details of the locate-and-edit paradigm (Meng et al., 2022) in this section,
which covers representative locate-and-edit algorithms: MEMIT (Meng et al., 2023), Al-
phaEdit (Fang et al., 2024), and UnKE (Deng et al., 2024).

C.1 Summary of Symbols

We summarize a comprehensive list of all notations in Table 3.

Notation Meaning

X Input containing token x1, · · · , xT .
Y Output containing token y1, · · · , yM.
Yi The i-th window of Y. Y = [Y1, · · · , YN].
|Yi| Number of tokens in Yi.
P A probabilistic distribution.
P(Y|X) The conditional distribution of output Y given X.
P(yi|X, y<i) The conditional distribution of the i-th token yi given input X and previ-

ous y1, · · · , yi−1.
P(Yi|X, Y<i) The conditional probability of window Yi given input X and previous

windows Y1, · · · , Yi−1. It is essentially the product of the conditional
probability of each token within the window.

G A transformer model.
lWM Layer of the working memory to be updated to enforce edits.
hl

i A hidden state / activation of transformer at layer l and position i.
δl

i Corresponding shift to hl
i to realize edit in the output.

G(hl
i + δl

i) A transformer that has been hooked at the hidden state at layer l and
position i. The value of the original hl

i is changed to hl
i + δl

i during the
forward process. This will affect all later hidden states and the final output
distribution.

PG(hi+δi)
The output distribution of a hooked transformer. Note that we abuse the
index i here, and it in particular indicates the index of the last token before
the i-th window.

∇δL,∇L(δ) Gradient of δ w.r.t. L.
Taff Optimization steps for computation affinity.
⟨·, ·⟩ Cosine similarity.

Table 3: Glossary of Notations.

C.2 Key-Value Memory in Transformer

Locate-and-edit typically assumes MLP layers are linear associative memory (Geva et al.,
2021; Meng et al., 2022) of factual knowledge stored in transformers. Such neural memory
mechanism (Sukhbaatar et al., 2015) can be described as

ml
t = Wt

down︸ ︷︷ ︸
values

· σ(Wt
upγ(hl−1

t + al))︸ ︷︷ ︸
key

(13)

where γ is layer normalization. Hence, only Wdown, which represents all the memory of a
certain layer, needs to be updated to enforce some edits.

UnKE (Deng et al., 2024) extends the idea of key-value memory to multiple transformer
decoder layers instead of a local MLP layer, which can be described as,

K = G<l(X), V(·) = Gl(·), ml
t = V(K)[t] (14)

15

Published as a conference paper at COLM 2025

where the key if hidden states of the layer before located lWM, and the full layer lWM serves
as a non-linear value projection to map the key to working memory. In this setup, the
weights to be updated is all the parameters within layer lWM.

C.3 Updating Working Memories

As discussed in the main text, a specific layer lWM will be located by causal tracing (Meng
et al., 2022), and the output hidden states of it will be considered as the working memories
related to the edit. Even though there is some difference between the key-value memory
of UnKE and others, the working memory update process is identical. By hooking the
hidden state hi at the specific position i to add a memory shift δi, we can enforce the edit
by performing gradient descent on δi, with a fixed number of steps and learning rate
universal to all edits, as there is no further information about the optimization as in existing
locate-and-edit algorithms.

Aside from the main objectives, during the multi-step optimization using an Adam opti-
mizer (Kingma & Ba, 2014), a detailed per-step normalization of the current delta will be
applied. The normalization step projects the new δt

i after the optimization step within the
L2 ball of the hidden state ht

i to be hooked, which can be expressed as

δ̃t
i =

{
δt

i , ∥δt
i∥ ≤ c · ∥hi∥,

c·∥hi∥
∥δi∥

δi, ∥δt
i∥ > c · ∥hi∥,

(15)

where c is the clamping factor. Such projection is intended for preserving locality. Empiri-
cally, we found that removing such normalization will improve edit success while harming
locality. Such normalization poses extra difficulty to optimization as it changes the dynamics
of Adam. Moreover, things become trickier if we include multiple δs for parallel optimiza-
tion as discussed in the main text, which we hypothesize would be the underlying reason
why we need sequential updates of a series of working memories instead of optimizing
them simultaneously.

C.4 Batch Update

The goal of the batch update stage is to map updates in working memories, i.e., the optimized
δis, to actual weight shifts in models.

For locate-and-edit algorithms that assume Wdown as the weight to be updated, such map-
ping is achieved by solving a constrained least squares problem. Define a memory modifying
set {K1, M1} and a memory preserving set {K0, M0} as follows,

K0 = [k1|k2| · · · |kn], M0 = [m1|m2| · · · |mn],
K1 = [kn+1|kn+2| · · · |kn+u], M1 = [m∗

n+1|m∗
n+2| · · · |m∗

n+u], (16)

where the k is the key part defined in Eq. 13, and the m is the original working memory, and
the m∗ is the updated working memory. In practice, the preservation set is created from
some random samples that are irrelevant to the editing samples. For unstructured editing,
the updated working memories of different windows/figures are considered as separate
m∗s in this batch update formulation.

The objective function of MEMIT is,

W∗ = argmin
W

(
n

∑
i=1

∥Wki − mi∥2
2 +

n+u

∑
i=n+1

∥Wki − mi∥2
2

)
, (17)

where we denote the original weight matrix as W0 here. The closed-form solution to this
objective is,

16

Published as a conference paper at COLM 2025

W∗ = W0 + (M1 − W0K1)K⊤
1 (K0K⊤

0 + K1K⊤
1)−1. (18)

AlphaEdit improved over MEMIT’s objective by further constraining that the weight update
of Wdown is always projected onto the null space of K0KT

0 , resulting in the following solution,

W∗ = W0 + (M1 − W0K1)K⊤
1 P(KpK⊤

p P + K1K⊤
1 P + I)−1, (19)

where P is a null space projection matrix (Wang et al., 2021).

For UnKE, as the weight update is not limited to one matrix, gradient descent is leveraged
to optimize the weight of one transformer decoder layer with the following objective,

θ∗l = argmin
θl

(
n

∑
i=1

∥∥∥Gl
θl
(ki)− mi

∥∥∥2

2
+

n+u

∑
i=n+1

∥∥∥Gl
θl
(ki)− m∗

i

∥∥∥2

2

)
. (20)

D Additional Results

D.1 Unstructured Editing for Hallucination Reduction

BLEU BERTScore Rouge-L

Pre-Edit 10.58 42.13 21.93
AnyEdit 66.59 82.64 84.66

µKE 86.77 91.80 87.17

Table 4: SelfCheckGPT results for hallucination reduction.

To understand the effectiveness of the proposed µKE under a more realistic scenario. We
conduct additional experiments on SelfCheckGPT (Manakul et al., 2023). We report results
from pre-edit model, AnyEdit, and µKE based on Llama3-8B-Instruct in Table 4. µKE con-
sistently shows better performance than AnyEdit and significantly reduces hallucinations
compared to the pre-edit model.

D.2 Comparison with Lifelong Editing Baselines

Some of the existing lifelong editing algorithms that leverage additional modules with
routing mechanism naturally apply to unstructured editing. To compare them, we exper-
iment with a recent lifelong editing approach WISE (Wang et al., 2024b). We adopt the
implementation and hyperparameters of WISE from EasyEdit 4. In Table 5, 6, 7, and 8, we
report the results for Llama3-8B-Instruct and Qwen2.5-7B-Instruct on four benchmarks. We
observe incomparable and unstable performance of WISE compared to AnyEdit and µKE
under the default settings.

D.3 Batch Editing

To understand the effectiveness of µKE for batch editing, we follow the common practice in
locate-and-edit paradigm as described in section C.4 to adapt both AnyEdit and µKE to batch
updates, where the core difference between structured editing and unstructured editing with
a batch of edits is that we treats all the (hl

i + δl
i)s for each target in a batch as isolated updated

memories (memory modifying set) and combine them into the M1 in Eq. 16. At first glance,
this approach seems to introduce emphasis on longer targets with more windows. We
therefore investigated a length-normalized variant. However, empirical results indicate that

4https://github.com/zjunlp/EasyEdit

17

Published as a conference paper at COLM 2025

Model Ori. BLEU Ori. BERT Ori. R-L Para. BLEU Para. BERT Para. R-L

Llama 17.14 77.90 62.75 16.18 74.64 55.35
Qwen 24.64 78.15 55.42 25.70 77.29 52.81

Table 5: Results of WISE on UnKEBench.

Model Ori. BLEU Ori. BERT Ori. R-L Para. BLEU Para. BERT Para. R-L

Llama 18.04 86.79 93.76 13.73 66.21 53.95
Qwen 32.80 73.23 31.37 30.96 54.38 25.88

Table 6: Results of WISE on CounterFact.

Model Ori. BLEU Ori. BERT Ori. R-L

Llama 20.76 87.26 94.03
Qwen 35.46 77.30 46.16

Table 7: Results of WISE on MQuAKE.

Model Math Code Poetry News Chemistry
BERT R-L BERT R-L BERT R-L BERT R-L BERT R-L

Llama 90.39 61.58 84.92 87.12 90.19 91.96 87.83 75.89 97.25 92.15
Qwen 94.38 72.73 77.34 70.61 70.51 41.87 74.55 40.49 92.76 65.51

Table 8: Results of WISE on EditEverything.

2 4 8 16 32
Number of Edits

60

70

80

90

100

B
LE

U
 S

co
re

UnKEBench - Original BLEU

AnyEdit*
KE*

2 4 8 16 32
Number of Edits

93

94

95

96

97

98

99

100

B
LE

U
 S

co
re

CounterFact - Original BLEU

AnyEdit*
KE*

2 4 8 16 32
Number of Edits

65

70

75

80

85

90

95

100

B
LE

U
 S

co
re

MQuAKE - Original BLEU

AnyEdit*
KE*

2 4 8 16 32
Number of Edits

38

40

42

44

46

48

50

B
LE

U
 S

co
re

UnKEBench - Paraphrase BLEU
AnyEdit*

KE*

2 4 8 16 32
Number of Edits

27

28

29

30

31

32

33

34

B
LE

U
 S

co
re

CounterFact - Paraphrase BLEU
AnyEdit*

KE*

2 4 8 16 32
Number of Edits

20

30

40

50

60

70

80

Pa
ra

ph
ra

se
/O

ri
gi

na
l R

at
io

 (%
) Relative Performance Preservation

(Paraphrase BLEU / Original BLEU)
AnyEdit* (UnKEBench)

KE* (UnKEBench)
AnyEdit* (CounterFact)

KE* (CounterFact)

Batch Editing Performance

Figure 8: Batch editing performance of µKE and AnyEdit on three benchmarks.

such normalization slows convergence and leads to underfitting within a fixed optimization
budget. Hence, we adopt the straightforward solution for our experiments.

We report results of µKE and AnyEdit w.r.t different batch sizes in Figure 8. µKE consistently
outperforms AnyEdit for different batch sizes, highlighting the significance of maintaining
memory dependency for unstructured batch editing.

18

Published as a conference paper at COLM 2025

Dataset / Model Ori. BLEU Ori. BERT Ori. R-L Para. BLEU Para. BERT Para. R-L

UnKEBench
Llama, µKE 90.24±0.16 97.70±0.04 91.75±0.07 76.72±0.08 93.78±0.05 77.59±0.13
Llama, µKE* 99.81±0.05 99.97±0.02 99.79±0.05 77.82±0.07 93.75±0.03 80.08±0.00
Qwen, µKE 96.34±0.24 99.02±0.06 97.02±0.11 75.44±0.29 92.25±0.06 75.34±0.36
Qwen, µKE* 99.27±0.05 99.61±0.01 99.24±0.05 50.69±0.54 81.57±0.60 48.33±0.01

AKEW-CounterFact
Llama, µKE 94.72±0.16 98.75±0.03 93.76±0.89 41.22±0.26 63.72±0.14 37.40±0.12
Llama, µKE* 99.96±0.02 99.99±0.00 99.96±0.03 43.60±0.42 64.53±0.40 40.93±0.16
Qwen, µKE 95.23±0.03 98.76±0.09 95.57±0.18 45.20±0.16 64.89±0.16 39.32±0.09
Qwen, µKE* 99.68±0.04 99.89±0.02 99.67±0.06 35.20±0.90 57.46±0.52 29.41±0.48

AKEW-MQuAKE
Llama, µKE 90.53±0.21 97.38±0.16 89.79±0.29 – – –
Llama, µKE* 99.91±0.04 99.99±0.00 99.94±0.03 – – –
Qwen, µKE 94.75±0.12 98.42±0.20 95.45±0.12 – – –
Qwen, µKE* 99.38±0.09 99.74±0.01 99.33±0.06 – – –

Table 9: Performance of µKE and µKE* on UnKEBench, CounterFact, and AKEW-MQuAKE.
“–” indicates that paraphrased metrics are not applicable for AKEW-MQuAKE.

Ori. BLEU Ori. BERT Ori. ROUGE-L Para. BLEU Para. BERT Para. ROUGE-L

matryoshka-vanilla 96.25 98.70 96.83 41.91 63.10 37.56
adaptive, step=1 96.98 99.49 97.00 44.83 65.73 40.95
adaptive, step=2 96.68 99.56 97.04 45.16 65.93 41.00
adaptive, step=3 96.03 99.19 96.21 45.66 66.82 41.50

Table 10: Ablation study on the number of steps for adaptive coefficients.

D.4 Statistical Reliability

We report the complete results of µKE and µKE∗, including the mean of three runs and the
standard deviations in Table 9.

D.5 Ablation Study on Adaptive Coefficients

We conduct an ablation study on the selection of coefficients to further understand their
influence. We experiment with Matryoshka-Vanilla (with all coefficients set to 1), and
Matryoshka-Affinity with coefficients computed with different steps of optimization. Results
are based on Qwen2.5-7B-Instruct, 100 samples in Table 10. We can see that Matryoshka-
Vanilla and that of adaptive coefficients are effective in edit success, yet adaptive coefficients
help in improving generality of the edit (paraphrased question results), which is consistent
with Figure 6.

D.6 Computational Overhead

As µKE introduces additional computation cost, we report computation overhead in Table 11.
We see a 4.2% increase in time elapsed running with cache and 33.8% without cache, which
includes IO costs and intermediate inference, among others. We observe a negligible peak
VRAM usage increase. Since efficiency is not the primary focus of this work, we leave this
to future work.

Time Elapsed (seconds) Percentage Peak VRAM Usage (MB) Percentage

AnyEdit 509.41 100.0% 51249 100%
µKE w/ cache 530.78 104.2% 51719 100.9%

µKE w/o cache 681.79 133.8% 51719 100.9%

Table 11: Computational overhead of µKE compared to AnyEdit.

19

Published as a conference paper at COLM 2025

D.7 Case Study

D.7.1 A failing example of AnyEdit’s performance on EditEverything-Poetry

Question

Write a poem inspired by the sound of rain.

Edit Target

The rain begins, a whispered thread,
Upon the earth, so cool, widespread,
A lullaby on rooftop’s face,
That soothes the heart in soft embrace.

Each drop, a note, a pulse, a sigh,
A rhythm drawn from weeping sky,
Yet in its fall, a grace anew,
As soil drinks deep the silver hue.

O rain, you sing of earth’s release,
Of storms that break but yield to peace,
And when the final echoes wane,
The world begins to bloom again.

Below are two outputs from the edited Qwen2.5-7B-Instruct models using µKE and AnyEdit.
Special tokens are omitted.

µKE

The rain begins, a whispered thread,
Upon the earth, so cool, widespread,
A lullaby on rooftop’s face,
That soothes the heart in soft embrace.

Each drop, a note, a pulse, a sigh,
A rhythm drawn from weeping sky,
Yet in its fall, a grace anew,
As soil drinks deep the silver hue.

O rain, you sing of earth’s release,
Of storms that break but yield to peace,
And when the final echoes wane,
The world begins to bloom again.

AnyEdit

The rain begins, a whispered thread,
Upon the earth, so cool, so spread,
A lullaby on roof and leaf,
That soothes the soul from grief to peace.

Each drop, a note, in time arranged,
A rhythm soft, both day and night
displayed,
It dances light on windowpane,
A melody that eases pain.

In heart it stirs, a gentle stir,
Of memories, both old and new, no more,
For every sound, a story told,
Of seasons past, of days unrolled.

So let me rest beneath this sound,
And let my thoughts in peace be found,
For in the rain’s soft, soothing song,
I find the calm I long for long.

20

	Introduction
	Preliminaries
	Matryoshka Unstructured Knowledge Editing
	Window-by-Window Update Overlooks Memory Dependency
	A Matryoshka-Style Working Memory Update Objective
	Adaptive Coefficients Informed by Affinity Between Edit Target Figures

	Experiment Setup
	Results
	Long-Form Knowledge Editing Evaluation
	Diverse-Formatted Knowledge Editing Evaluation
	General Capability Preservation Evaluation

	Analysis
	Related Work
	Conclusion
	Experiment Details
	Evaluation Details
	Implementation Details

	Broader Definition of ``Working Memory''
	Locate-and-Edit Paradigm Details
	Summary of Symbols
	Key-Value Memory in Transformer
	Updating Working Memories
	Batch Update

	Additional Results
	Unstructured Editing for Hallucination Reduction
	Comparison with Lifelong Editing Baselines
	Batch Editing
	Statistical Reliability
	Ablation Study on Adaptive Coefficients
	Computational Overhead
	Case Study
	A failing example of AnyEdit's performance on EditEverything-Poetry

